Degree-1 mantle convection and the crustal dichotomy on Mars

نویسندگان

  • Shijie Zhong
  • Maria T. Zuber
چکیده

The surface of Mars consists of an old, heavily cratered and elevated southern hemisphere and younger, resurfaced and depressed northern hemisphere, a feature often termed the crustal dichotomy. The global crustal structure [Zuber et al., 2000] revealed by topography and gravity data from the Mars Global Surveyor spacecraft, and the possible late formation of the boundary zone between the hemispheres [McGill and Dimitriou, 1990], have been proposed to indicate an endogenic origin for the dichotomy. However, degree-1 mantle convection that is required for any endogenic process to be viable cannot be produced with conventional mantle convection models [Schubert et al., 1990]. We have studied the role of radially stratified viscosity on mantle deformation by using Rayleigh^Taylor instability analyses in a spherical shell geometry. Our analyses reveal that when mantle viscosity is stratified with a weak asthenosphere, deformation at long wavelengths is more efficient than that at short wavelengths. The weaker the asthenosphere, the longer the wavelength at which the deformation is the most efficient. A thicker asthenosphere also favors the deformation at long wavelengths. Both the Rayleigh^Taylor instability analyses and numerical modeling of mantle convection show that degree-1 convection can be produced within the Martian mantle provided that the mantle had a weak asthenosphere (V500 km thick and V102 times weaker than the underlying mantle) early in planetary history. The degree-1 convection causes preferential heating of one hemisphere that may explain the primary features associated with the dichotomy in crustal structure. ß 2001 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polar Wander of Mars Driven by Degree-1 Mantle Convection and Its Implications for the Formation of the Crustal Dichotomy and the Tharsis Rise

The topography on Mars is dominated by the crustal dichotomy between the northern and southern hemispheres and the Tharsis rise on the equator[1]. No explanation has been offered so far as to why the dichotomy should be in its current orientation rather than another. The geoid is currently dominated by Tharsis [2] and rotational stability suggests that a Tharsis-sized load would induce polar wa...

متن کامل

The Causes and Consequences of the Crustal Dichotomy and Their Implications for the Early Evolution of Mars

Introduction: The two most striking surface features on Mars are the crustal dichotomy and the Tharsis Rise [1]. While it is generally accepted that the Tharsis Rise is formed as a result of plume related volcanism [2], the formation mechanism for the crustal dichotomy is controversial with two main competing proposals: endogenic (mantle convection and flow) [3-5] and exo-genic (mega-impact) me...

متن کامل

Long‐wavelength stagnant lid convection with hemispheric variation in lithospheric thickness: Link between Martian crustal dichotomy and Tharsis?

[1] A dynamic link between the early evolution of Tharsis and the crustal dichotomy on Mars was recently proposed by Zhong (2009). We address in detail the fundamental aspects of the proposed model using 3‐D spherical shell modeling of convection. We investigate the conditions under which a spherical harmonic degree 1 flow is produced in the mantle of Mars in layered viscosity models with diffe...

متن کامل

DEGREE-1 MANTLE CONVECTION AND THE ORIGIN OF THE MARTIAN HEMISPHERIC DICHOTOMY. James

The hemispheric dichotomy on Mars is largely an expression of varying crustal thickness [1]. Although there is some disagreement as to the timing of its formation, the dichotomy is very old, forming during or before the early Noachian [2]. Several formation mechanisms, including both exogenic (giant impacts) [3] and endogenic processes including mantle convection [4], plate tectonics [5], and o...

متن کامل

Crustal structure of Mars from gravity and topography

[1] Mars Orbiter Laser Altimeter (MOLA) topography and gravity models from 5 years of Mars Global Surveyor (MGS) spacecraft tracking provide a window into the structure of the Martian crust and upper mantle. We apply a finite-amplitude terrain correction assuming uniform crustal density and additional corrections for the anomalous densities of the polar caps, the major volcanos, and the hydrost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001